

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 11911-11919

Oxidative free radical reactions between 2-amino-1,4benzoquinones and carbonyl compounds

Che-Ping Chuang* and An-I Tsai

Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, ROC

Received 15 August 2007; revised 8 September 2007; accepted 11 September 2007 Available online 14 September 2007

Abstract—The manganese(III) initiated oxidative free radical reactions of 2-amino-1,4-benzoquinone are described. The free radical reaction of 5,6-dimethyl-2-methylamino-1,4-benzoquinone (1) provides a novel method for the synthesis of indole-4,7-dione and indole-2,4,7-trione. High chemoselectivity was observed in different solvents. The regioselectivity of this reaction was also studied with 5-methyl-2-methyl-amino-1,4-benzoquinone (19). In most cases, indole-4,7-diones 20 and 21 were produced in high regioselectivity. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon-carbon bond forming reactions mediated by radical have received considerable attention in organic synthesis during the last two decades.¹ Naturally occurring quinones such as mitosenes, murayaquinones, etc. represent an important class of biologically significant natural products.² A common building block to these compounds is the indologuinone unit. The development of new synthetic methodologies for the synthesis of indoloquinone ring system is therefore important.^{3,4} The oxidative free radical reaction mediated by metal salts has been developed into a versatile protocol for the formation of highly functionalized products from simple precursors.^{1d-f,5-8} Among these, manganese(III) acetate and cerium(IV) ammonium nitrate have been used most efficiently. Previously, we found that oxidative free radical reactions of 2-amino-1,4-naphthoquinones with malonate, nitroacetate, and carbonyl compounds produced benzo[f]indole-4,9-diones, benzo[f]indole-2,4,9-triones, benzo[b]carbazole-6,11-diones, and benzo[b]acridine-6,11-diones effectively.⁶ This report describes our results on the manganese(III) acetate mediated oxidative free radical reaction between 2-amino-1,4-benzoquinones and carbonyl compounds.

2. Results and discussion

2.1. The oxidative free radical reaction of 5,6-dimethyl-2-methylamino-1,4-benzoquinone (1)

We began our studies of this manganese(III)-mediated free radical reaction with 1 and $\beta\text{-keto}$ ester $2~(R^2 =$

OR) (Eq. 1). When 1 was treated with ethyl acetoacetate (2a) and manganese(III) acetate in acetic acid at room temperature, **3a** was obtained as the only product in 77% yield (Table 1, entry 1). With other β -keto esters, in addition to the expected condensation product 3, the rearrangement product 4 was also formed (Table 1, entries 2-5). Indoles 3 and 4 were formed presumably via the reaction routes presented in Scheme 1. Manganese(III) acetate oxidation of β -keto ester 2 produces radical 6. This radical intermediate 6 undergoes intermolecular addition to the quinone ring followed by oxidation to generate 7. When R^1 =Me, 7 undergoes condensation reaction to produce 3 (path a). With larger R^1 , 7 undergoes either condensation reaction to generate 3 (path a) or oxidation reaction to give radical 8 (path b). Radical 8 undergoes intramolecular cyclization followed by oxidation to produce 10, which subsequently undergoes alkyl group (R^{1}) migration to produce 4. The ratios of 4/3 increase as the size of R¹ increases. This can be attributed to the steric effect exerted by R1 group-the condensation of 7 (path a) is retarded by the larger R^1 group and the oxidation of 7 to produce radical 8 occurred (path b). Since the cerium salt can enhance the rate of the condensation,⁹ to improve the reaction yield of condensation product 3, this oxidative free radical reaction between 1 and β -keto ester 2 was next investigated with Mn(III)-Ce(III) systems. Reaction of 1a with methyl 4-methoxyacetoacetate (2d), manganese(III) acetate, and cerium(III) nitrate in acetic acid at room temperature gave 3d and 4c in 76 and 12% yields, respectively (Table 1, entry 7). Other examples are also shown in Table 1 (entries 6 and 8). The presence of cerium(III) nitrate appears to increase the 3/4 ratio, producing condensation product 3 as the major product. These results demonstrate that the condensation rate of 7 is enhanced by the addition of cerium salt.

Keywords: Manganese(III) acetate; Free radical; 2-Amino-1,4-benzoquinones; Solvent effects; Regioselectivity.

^{*} Corresponding author. Fax: +886 6 2740552; e-mail: cpchuang@mail. ncku.edu.tw

^{0040–4020/\$ -} see front matter 0 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.09.019

Entry	1,3-Dicarbonyl compounds 2a: R ¹ =Me, R ² =OEt	Solvent HOAc	Reaction time 2 h	Product (yield, %)		
1				3a (77)		
2	2b : $R^1 = {}^n Pr$, $R^2 = OEt$	HOAc	4.5 h	3b (67)	4a (trace)	
3	2c : $R^1 = Pr$, $R^2 = OMe$	HOAc	4.5 h	3c (32)	4b (32)	
4	2d : R^1 =MeOCH ₂ , R^2 =OMe	HOAc	3.5 h	3d (27)	4c (63)	
5	2e : R^1 =ClCH ₂ , R^2 =OEt	HOAc	2.5 h	3e (11)	4d (48)	
6	2c : $R^1 = Pr$, $R^2 = OMe$	HOAc ^a	4.5 h	3c (67)		
7	2d : R^1 =MeOCH ₂ , R^2 =OMe	HOAc ^a	4 h	3d (76)	4c (12)	
8	2e : R^1 =ClCH ₂ , R^2 =OEt	HOAc ^a	4 h	3e (56)	4d (12)	
9	2b : $R^1 = {}^n Pr$, $R^2 = OEt$	HCO_2H	10 min	3b (60)		
10	2c : $R^1 = {}^{i}Pr$, $R^2 = OMe$	HCO_2H	10 min	3c (47)		
11	2d : R^1 =MeOCH ₂ , R^2 =OMe	HCO_2H	10 min	3d (28)		
12	2e : R^1 =ClCH ₂ , R^2 =OEt	HCO_2H	10 min	3e (32)		
13	2d : R^1 =MeOCH ₂ , R^2 =OMe	CF ₃ CH ₂ OH	30 min		4c (71)	
14	2d : R^1 =MeOCH ₂ , R^2 =OMe	CH ₃ CN	30 min		4c (71)	
15	2d : R^1 =MeOCH ₂ , R^2 =OMe	C_6H_6	30 min		4c (70)	
16	2d : R^1 =MeOCH ₂ , R^2 =OMe	CHCl ₃	30 min		4c (74)	
17	2b : $R^{1} = {}^{n}Pr$, $R^{2} = OEt$	CF ₃ CH ₂ OH	30 min		4a (34)	
18	2c : $R^1 = Pr$, $R^2 = OMe$	CF ₃ CH ₂ OH	30 min		4b (75)	
19	2e : R_1^1 =ClCH ₂ , R^2 =OEt	CHCl ₃	30 min		4d (66)	
20	2f : $R^1 = Me$, $R^2 = Me$	HOAc	3.5 h	3f (78)		
21	2g : R^1 =Et, R^2 =Et	HOAc	4.5 h	3g (77)		
22	2h : $R^1 = Me$, $R^2 = {}^nBu$	HOAc	4.5 h	3h (65)	5a (14)	
23	2i : $R^1 = Me$, $R^2 = Bu$	HOAc	6 h	3i (70)		
24	2j : $R^1 = Me$, $R^2 = Bu$	HOAc	24 h	3j (67)		
25	2k : $R^1 = {}^{i}Bu$, $R^2 = {}^{t}Bu$	HOAc	24 h	3k (50)		
26	2l : R^1 =Me, R^2 =Ph	HOAc	3.5 h	3l (88)		

Table 1. Free radical reaction between 1 and β -dicarbonyl compounds

^a The reaction was performed with additional 2 equiv of cerium(III) nitrate.

Scheme 1.

The solvent effects play an important role in the manganese(III) acetate mediated oxidative free radical reaction.¹⁰ In an effort to study the effect of reaction medium on the chemoselectivity of the oxidative free radical reaction between **1** and β -keto ester **2** (R²=OR), we next performed this reaction in various solvents. When a solution of **1** in formic acid was treated with ethyl butyrylacetate (**2b**) and manganese(III) acetate at 0 °C for 10 min, **3b** was obtained exclusively in 60% yield (Table 1, entry 9). Other β -keto ester **2** behaved similarly giving only the corresponding condensation product **3** (entries 10–12). These results demonstrate that the higher acidity of formic acid enhances the condensation rate of 7 and path a is the only reaction route. This reaction was then performed in neutral solvents. Treatment of 1a and 2d with manganese(III) acetate in CF₃CH₂OH at 80 °C for 30 min resulted in the formation of 4c (71%, entry 13). Reaction between 1 and 2d was also performed in other neutral solvents (entries 14-16). The change of solvent to acetonitrile, benzene, and chloroform gave rearrangement product 4c as the only product in 70-74% yields. This could account for the decrease in the rate of condensation (path a) as the acidity of reaction medium decreases and the oxidation of 7 to produce radical 8 (path b) becomes the major route. The generalities of this reaction were explored using a variety of β -keto esters and the results are also illustrated in Table 1 (entries 17-19). In all cases, rearrangement product 4 was produced in high selectivity.

Next, we investigated this manganese(III)-mediated reaction of 1 with 1,3-diones. Treatment of 1 with 2,4-pentanedione (2f) and manganese(III) acetate in acetic acid at room temperature led to the formation of **3f** in 78% yield (entry 20). The scope of this reaction is shown in Table 1 (entries 20-26). In contrast to the reaction between 1 and β -keto ester 2, the condensation product 3 is the only product. Steric hindrance plays an important role in the final outcome of this reaction. In most cases, the condensation reaction occurs on the less hindered carbonyl group of the 1,3-diones (entries 22–26). With 1,3-dione 2h, in addition to the expected product 3h (65%), 5a derived from the addition of amino group to the more hindered carbonyl group was also obtained as the minor product (14%, entry 22). The reaction vield decreases as the size of R¹ and R² increases. Again, this is presumably due to the decrease in the rate of condensation as the size of substituents increases.

We have continued to study this manganese(III)-mediated reaction with simple ketone 11 (Eq. 2). When 1 was

Table 2. Free radical reaction between 1 and simple ketones

treated with acetone (11a) (4 equiv) and manganese(III) acetate in acetic acid at 45 °C, 12a was obtained in 20% yield (Table 2, entry 1). The reaction yield can be improved to 36% when 10 equiv of acetone (11a) was used (entry 2). The generalities of this reaction were examined with other simple ketones (entries 3 and 4). Indoles 12b and 12c were formed in 29 and 51% yields, respectively. These products were formed presumably via a similar reaction route as shown in Scheme 1 (path a). Due to the instability of 1 in acidic medium, we expected that the radical reaction between 1 and 11 in neutral solvents would give 12 in a better result. Indeed, when 1 was reacted with acetone (11a) and manganese(III) acetate in acetonitrile at 60 °C for 16 h, 12a was isolated in a better reaction yield (63%, entry 5) than that performed in acetic acid (36% yield, entry 2). This reaction can also be performed with acetone as solvent and 12a was obtained in 72% yield (entry 6). The results of this reaction with a variety of simple ketones in neutral solvents are also summarized in Table 2 (entries 7-11). In all cases, indole 12 was obtained in a better reaction yield than those performed in acetic acid.

The regioselectivity of this free radical reaction was examined with unsymmetrical simple ketone **13** (Eq. 3). With butanone (**13a**: R^1 =Me, R^2 =H), **14a** and **15a** were obtained

Entry	Carbonyl compounds	Solvent	Reaction time (h)	Product (yield, %)		
1	11a : $R^1 = H, R^2 = Me$	HOAc	39 ^a	12a (20)		
2	11a : $R^1 = H, R^2 = Me$	HOAc	17 ^b	12a (36)		
3	11b : $R^1 = H$, $R^2 = Ph$	HOAc	11 ^b	12b (29)		
4	11c : $R^1 + R^2 = CH_2CH_2CH_2CH_2$	HOAc	5 ^b	12c (51)		
5	11a : $R^1 = H$, $R^2 = Me^2$	CH ₃ CN	16 ^b	12a (63)		
6	11a : $R^1 = H$, $R^2 = Me$	2	$7^{\rm c}$	12a (72)		
7	11a : $R^1 = H$, $R^2 = Me$	C_6H_6	13 ^b	12a (67)		
8	11a : $R^1 = H$, $R^2 = Me$	CHCl ₃	16 ^b	12a (62)		
9	11b : $R^1 = H$, $R^2 = Ph$	CH ₃ CN	28 ^b	12b (58)		
10	11c : $R^1 + R^2 = CH_2CH_2CH_2CH_2$	CHCl ₃	3 ^b	12c (76)		
11	11d : $R^1 = Ph, R^2 = Ph$	CH ₃ CN	6 ^b	12d (73)		
12	13a : $R^1 = Me$, $R^2 = H$	CHCl ₃	16 ^b	14a (39)	15a (28)	
13	13b : $R^1 = {}^nBu$, $R^2 = H$	CHCl ₃	16 ^b	14b (42)	15b (29)	
14	13c : $R^1 = {}^{i}Pr$, $R^2 = H$	CHCl ₃	16 ^b	14c (70)	15c (7)	
15	13d : $R^1 = Me$, $R^2 = Me$	CHCl ₃	16 ^b	14d (55)		
16	18a : $R^1 = {}^n Bu$	HOAc	16 ^d		15b (55)	
17	18a : $R^1 = {}^n Bu$	CH ₃ CN	13 ^d		15b (63)	
18	18b : $R^1 = CH_2CH_2CO_2Me$	HOAc	5 ^d		15d (48)	
19	18b : $R^1 = CH_2CH_2CO_2Me$	CH ₃ CN	9 ^d		15d (59)	
20	18c: 2-Acetylcyclopentanone	CH ₃ CN	9^d		15e ^e (56)	

^a The reaction was conducted with 4 equiv of acetone.

^b The reaction was conducted with 10 equiv of corresponding simple ketone.

^c The reaction was conducted with acetone as solvent.

^d The reaction was conducted with 4 equiv of corresponding 1,3-dione.

^e $R^1 = CH_2CH_2CH_2CO_2H$.

in 39 and 28% yields, respectively (entry 12). These two products are derived from the intermolecular addition of radical 16a and 17a. As the size of R^1 and R^2 increases, the regioselectivity of this reaction increases and 14 becomes the major product (entries 12-15). 2-Alkyl-1,3-dione 18 can be used as the synthetic equivalent of radical intermediate 17 (R^2 =H).^{6g} For the selective formation of 15, reaction between 1 and 18 was next investigated. Treatment of 1 and 1,3-dione 18a ($R^1 = {}^nBu$) with manganese(III) acetate in acetic acid at room temperature gave 15b as the only product in 55% yield (entry 16). The reaction yield can be improved to 63% when acetonitrile was used as solvent (entry 17). In contrast, with 2-heptanone (13b), 14b and 15b were obtained in 42 and 29% yields, respectively (entry 13). Other examples are also summarized in Table 2 (entries 18-20). In all cases, indole 15 was obtained as the only product.

2.2. The regioselectivity of the oxidative free radical reaction between 5-methyl-2-methylamino-1,4-benzo-quinone (19) and carbonyl compounds

We first tried the reaction between **19** and β -dicarbonyl compounds (Eq. 4). When **19** was treated with ethyl acetoacetate (**2a**) and manganese(III) acetate in acetic acid at room temperature for 7 h, **20a** was obtained exclusively in 61% yield and no product derived from the addition of radical **6a** to the C₆ of **19** can be found (Table 3, entry 1). This can be ascribed to the electron deficiency of radical intermediate **6a**, and this

 Table 3. The regioselectivity of the free radical reaction between 19 and carbonyl compounds

Entry	Carbonyl compounds	Reaction time (h)	Product (yield, %)	
1	2a : R^1 =Me, R^2 =OEt	7 ^a	20a (61)	
2	2b : $R^1 = Pr$, $R^2 = OEt$	7^{a}	20b (51)	
3	2f : R^1 =Me, R^2 =Me	7^{a}	20c (53)	
4	2i : $R^1 = Me$, $R^2 = {}^iBu$	24 ^a	20d (47)	
5	2j : $R^1 = Me$, $R^2 = Bu$	35 ^a	20e (33)	
6	2l : R^1 =Me, R^2 =Ph	7 ^a	20f (61)	
7	11a : $R^1 = H$, $R^2 = Me$	13 ^b	21a (38) 22a (25)	
8	11a : $R^1 = H$, $R^2 = Me$	13 ^c	21a (47) 22a (10)	
9	11e : R^1 =Me, R^2 =Et	13 ^c	21b (35) 22b (10)	
10	11b : $R^1 = H$, $R^2 = Ph$	34 [°]	21c (31)	
11	11d : R^1 =Ph, R^2 =Ph	7 ^c	21d (75)	

^a The reaction was performed with acetic acid as solvent.

^b The reaction was performed with acetone as solvent.

^c The reaction was performed with benzene as solvent.

makes the rate of intermolecular addition to the C–C double bond bearing an electron-donating amino group much faster. Analogous results were obtained with other β -dicarbonyl compounds and the results are summarized in Table 3 (entries 2–6). In all cases, **20** was obtained as the only product in fair yield.

We also examined the regioselectivity of this reaction with simple ketones. When **19** was treated with manganese(III) acetate in acetone (**11a**) at 60 °C for 13 h, in addition to expected product **21a** (38%), **22a** was also obtained in 25% yield (Table 3, entry 7). Indole **22a** was presumably derived from the further addition of radical **23a** to **21a**. In benzene, the **21a/22a** ratio rose to 4.7:1 (entry 8). The different behavior between **6a** and **23a** is presumably due to the less electron deficiency of radical intermediate **23a**, making the rate of intermolecular addition to C₆ of **19** much slower than that of **6a** and the addition of radical **23a** to **21a** occurred. Other examples are also shown in Table 3 (entries 9–11). For reasons that are not clear, as the size of simple ketone increases, the regioselectivity increases and **21** becomes the only product (entries 10 and 11).

In conclusion, carbon radical can be generated from the manganese(III) acetate oxidation of carbonyl compounds and it undergoes efficient addition to the C-C double bond of 2-amino-1,4-benzoquinones. The free radical reaction of 2,5-dimethyl-2-methylamino-1,4-benzoquinone provides a novel method for the synthesis of indole-4,7-dione and indole-2,4,7-trione. With β -keto esters, by changing the solvent, the condensation product indole-4,7-dione and rearrangement product indole-2,4,7-trione can be generated in high chemoselectivity. With 1,3-diones, the condensation product is the only product. With simple ketones, the condensation product was produced and it gave better results in neutral solvents. Reaction of 5-methyl-2-methylamino-1,4-benzoquinone produced indole-4,9-dione derived from the intermolecular addition of radical intermediate to the C-C double bond with an electron-donating amino group in high regioselectivity.

3. Experimental

3.1. General

Melting points are uncorrected. Infrared spectra were taken with a Hitachi 260-30 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-400, AVANCE 500, or AVANCE 300 spectrometer. Chemical shifts are reported in parts per million relative to TMS as internal reference. Elemental analyses were performed with Heraeus CHN-Rapid Analyzer. Mass spectra were recorded with Finnigan MAT-95XL mass spectrometer. Analytical thin-layer chromatography was performed with precoated silica gel 60 F₂₅₄ plates (0.25 mm thick) and visualized by UV. The reaction mixture was purified by column chromatography over silica gel (70–230 mesh). The starting 2-amino-1,4-benzoquinones **1** and **19** were synthesized according to literature procedure.¹¹

3.2. Typical experimental procedure for the reaction in acidic solvent

A mixture of 5,6-dimethyl-2-methylamino-1,4-benzoquinone (1, 103 mg, 0.62 mmol), ethyl acetoacetate (2a, 323 mg, 2.48 mmol), and Mn(OAc)₃ (1.0 g, 3.73 mmol) in acetic acid (10 mL) was stirred at room temperature for 2 h. The reaction mixture was diluted with ethyl acetate (100 mL), washed with saturated aqueous sodium bisulfite (50 mL), water (3×50 mL), and saturated aqueous sodium bicarbonate (50 mL), and dried (Na₂SO₄). The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel (20 g) using dichloromethane–hexane (2:1) as eluent, followed by crystallization (ethyl acetate–hexane) to give **3a** (131 mg, 77%).

3.3. Typical experimental procedure for the reaction in neutral solvent

A mixture of 5,6-dimethyl-2-methylamino-1,4-benzoquinone (**1**, 120 mg, 0.73 mmol), methyl methoxyacetoacetate (**2d**, 477 mg, 3.27 mmol), and Mn(OAc)₃ (1.17 g, 4.37 mmol) in CF₃CH₂OH (10 mL) was heated at 80 °C for 30 min. After workup as described above, the residue was chromatographed over silica gel (20 g, eluted with 2:1 dichloromethane–hexane) followed by crystallization (ethyl acetate–hexane) to give **4c** (158 mg, 71%).

3.3.1. 3-Ethoxycarbonyl-1,2,5,6-tetramethyl-1*H***-indole-4,7-dione 3a.** Orange crystals; mp 92–93 °C; IR (CHCl₃) 2990, 1705, 1645, 1620, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.40 (t, *J*=7.1 Hz, 3H, CH₃), 2.02 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 3.90 (s, 3H, NCH₃), 4.38 (q, *J*=7.1 Hz, 2H, OCH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.7 (q), 11.9 (q), 12.6 (q), 14.2 (q), 32.5 (q), 60.8 (t), 112.7 (s), 123.4 (s), 129.0 (s), 139.1 (s), 140.8 (s), 141.3 (s), 164.5 (s), 178.6 (s), 181.5 (s). Anal. Calcd for C₁₅H₁₇NO₄: C, 65.44; H, 6.22; N, 5.09. Found: C, 65.30; H, 6.26; N, 5.05.

3.3.2. 3-Ethoxycarbonyl-1,5,6-trimethyl-2-propyl-1*H***-in-dole-4,7-dione 3b.** Yellow needles; mp 126–127 °C; IR (CHCl₃) 2975, 2930, 1700, 1625, 1300 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃) δ 0.99 (t, *J*=7.5 Hz, 3H, CH₃), 1.40 (t, *J*=7.2 Hz, 3H, CH₃), 1.61 (sextet, *J*=7.5 Hz, 2H, CH₂), 2.03 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.81 (t, *J*=7.5 Hz, 2H, CH₂), 3.92 (s, 3H, NCH₃), 4.38 (q, *J*=7.2 Hz, 2H, OCH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.0 (q), 12.6 (q), 13.8 (q), 14.2 (q), 22.4 (t), 26.4 (t), 32.6 (q), 60.8 (t), 112.8 (s), 123.5 (s), 129.1 (s), 139.2 (s), 141.3 (s), 144.6 (s), 164.5 (s), 178.7 (s), 181.7 (s). Anal. Calcd for C₁₇H₂₁NO₄: C, 67.31; H, 6.98; N, 4.62. Found: C, 67.36; H, 6.96; N, 4.61.

3.3.3. 2-Isopropyl-3-methoxycarbonyl-1,5,6-trimethyl-*1H*-indole-4,7-dione 3c. Yellow crystals; mp 102–103 °C; IR (CHCl₃) 2975, 1730, 1645, 1280, 1230 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (d, *J*=7.0 Hz, 6H, 2×CH₃), 2.02 (s, 6H, 2×CH₃), 3.19 (septet, *J*=7.0 Hz, 1H, CH), 3.93 (s, 3H, NCH₃), 3.98 (s, 3H, OCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 12.1 (q), 12.3 (q), 20.7 (2×q), 25.6 (d), 32.7 (q), 52.4 (q), 112.4 (s), 123.4 (s), 127.9 (s), 140.2 (s), 140.6 (s), 145.8 (s), 166.6 (s), 178.5 (s), 182.0 (s). Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.42; H, 6.63; N, 4.81.

3.3.4. 3-Methoxycarbonyl-2-methoxymethyl-1,5,6-trimethyl-1*H***-indole-4,7-dione 3d.** Yellow needles; mp 142–143 °C; IR (CHCl₃) 2930, 1715, 1650, 1315, 1280 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 3.36 (s, 3H, OCH₃), 3.93 (s, 3H, NCH₃), 4.01 (s, 3H, OCH₃), 4.65 (s, 2H, OCH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.9 (q), 12.6 (q), 33.1 (q), 52.0 (q), 57.9 (q), 62.5 (t), 114.5 (s), 122.7 (s), 130.1 (s), 138.5 (s), 139.5 (s), 141.8 (s), 164.5 (s), 178.9 (s), 181.3 (s). Anal. Calcd for C₁₅H₁₇NO₅: C, 61.85; H, 5.88; N, 4.81. Found: C, 61.65; H, 5.94; N, 4.72.

3.3.5. 2-Chloromethyl-3-ethoxycarbonyl-1,5,6-trimethyl-1*H***-indole-4,7-dione 3e.** Yellow needles; mp 106–107 °C; IR (CHCl₃) 2990, 1705, 1650, 1620, 1510 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, *J*=7.1 Hz, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 4.06 (s, 3H, NCH₃), 4.42 (q, *J*=7.1 Hz, 2H, OCH₂), 4.88 (s, 2H, ClCH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 12.0 (q), 12.8 (q), 14.1 (q), 32.8 (q), 33.5 (t), 61.3 (t), 114.4 (s), 123.1 (s), 130.4 (s), 137.8 (s), 139.5 (s), 142.3 (s), 163.4 (s), 179.0 (s), 181.0 (s). Anal. Calcd for C₁₅H₁₆ClNO₄: C, 58.16; H, 5.21; N, 4.52. Found: C, 58.16; H, 5.27; N, 4.51.

3.3.6. 3-Acetyl-1,2,5,6-tetramethyl-1*H***-indole-4,7-dione 3f.** Orange needles; mp 165–166 °C; IR (CHCl₃) 3010, 2955, 1645, 1505, 1435 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.64 (s, 3H, CH₃), 3.91 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.8 (q), 12.0 (q), 12.7 (q), 31.5 (q), 32.5 (q), 121.7 (s), 122.8 (s), 128.6 (s), 139.6 (s), 140.6 (s), 141.0 (s), 178.7 (s), 182.9 (s), 198.9 (s). Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.53; H, 6.20; N, 5.68.

3.3.7. 2-Ethyl-1,5,6-trimethyl-3-propanoyl-1*H***-indole-4,7-dione 3g.** Yellow crystals; mp 118–119 °C; IR (CHCl₃) 2980, 1645, 1505, 1465, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, *J*=7.5 Hz, 3H, CH₃), 1.19 (t, *J*=7.5 Hz, 3H, CH₃), 2.04 (s, 6H, 2×CH₃), 2.74 (q, *J*=7.5 Hz, 2H, CH₂), 3.02 (q, *J*=7.5 Hz, 2H, CH₂), 3.93 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 8.5 (q), 11.9 (q), 12.5 (q), 13.5 (q), 17.8 (t), 32.2 (q), 36.4 (t), 121.1 (s), 122.7 (s), 128.4 (s), 139.7 (s), 140.8 (s), 145.1 (s), 178.5 (s), 182.9 (s), 202.4 (s). Anal. Calcd for C₁₆H₁₉NO₃: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.42; H, 7.11; N, 5.11.

3.3.8. 1,2,5,6-Tetramethyl-3-pentanoyl-1*H***-indole-4,7-dione 3h.** Yellow powders; mp 144–145 °C; IR (CHCl₃) 3010, 2960, 1645, 1510, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, *J*=7.4 Hz, 3H, CH₃), 1.36 (sextet, *J*=7.4 Hz, 2H, CH₂), 1.63 (quintet, *J*=7.4 Hz, 2H, CH₂), 2.05 (s, 6H, 2×CH₃), 2.33 (s, 3H, CH₃), 3.02 (t, *J*=7.4 Hz, 2H, CH₂), 3.91 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.6 (q), 12.0 (q), 12.7 (q), 14.0 (q), 22.4 (t), 26.8 (t), 32.5 (q), 43.1 (t), 121.9 (s), 122.6 (s), 128.5 (s), 139.7 (s), 139.9 (s), 140.9 (s), 178.7 (s), 182.9 (s), 202.4 (s). Anal. Calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.37; N, 4.87. Found: C, 71.05; H, 7.34; N, 4.78.

3.3.9. 1,2,5,6-Tetramethyl-3-(3-methylbutanoyl)-1*H***-indole-4,7-dione 3i.** Yellow crystals; mp 120–121 °C; IR (CHCl₃) 2960, 1645, 1510, 1465, 1250 cm⁻¹; ¹H NMR (400 MHz, DMSO) δ 0.90 (d, *J*=6.8 Hz, 6H, 2×CH₃), 1.95 (s, 6H, 2×CH₃), 2.06 (nontet, *J*=6.8 Hz, 1H, CH), 2.32 (s, 3H, CH₃), 2.80 (d, *J*=6.8 Hz, 2H, CH₂), 3.85 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, DMSO) δ 9.7 (q), 11.3 (q), 11.8 (q), 22.0 (2×q), 24.5 (d), 31.9 (q), 51.5 (t), 121.2 (s), 121.8 (s), 127.9 (s), 139.2 (s), 139.6 (s), 139.9 (s), 177.4 (s), 182.1 (s), 200.1 (s). Anal. Calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.37; N, 4.87. Found: C, 71.05; H, 7.42; N, 4.85.

3.3.10. 1,2,5,6-Tetramethyl-3-pivaloyl-1*H***-indole-4,7-dione 3j.** Orange crystals; mp 168–169 °C; IR (CHCl₃) 2970, 1680, 1645, 1465, 1235 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.23 (s, 9H, 3×CH₃), 2.01 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 3.88 (s, 3H, NCH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 10.7 (q), 12.0 (q), 12.2 (q), 26.9 (3×q), 32.3 (q), 45.6 (s), 121.3 (s), 123.4 (s), 127.8 (s), 134.1 (s), 140.0 (s), 140.2 (s), 178.1 (s), 182.3 (s), 211.7 (s). Anal. Calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.37; N, 4.87. Found: C, 71.03; H, 7.38; N, 4.85.

3.3.11. 1,5,6-Trimethyl-2-(2-methylpropyl)-3-(pivaloyl)-*1H*-indole-4,7-dione 3k. Orange crystals; mp 167–168 °C; IR (KBr) 2955, 1645, 1505, 1455, 1240 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (d, *J*=6.8 Hz, 6H, 2×CH₃), 1.24 (s, 9H, 3×CH₃), 1.91 (nontet, *J*=6.8 Hz, 1H, CH), 2.01 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 2.41 (d, *J*=6.8 Hz, 2H, CH₂), 3.90 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.1 (q), 12.3 (q), 22.4 (2×q), 27.4 (3×q), 28.8 (d), 33.1 (q), 33.9 (t), 45.3 (s), 122.3 (s), 123.4 (s), 128.1 (s), 137.8 (s), 140.2 (s), 140.4 (s), 178.2 (s), 182.6 (s), 211.7 (s). Anal. Calcd for C₂₀H₂₇NO₃: C, 72.92; H, 8.26; N, 4.25. Found: C, 72.71; H, 8.25; N, 4.18.

3.3.12. 3-Benzoyl-1,2,5,6-tetramethyl-1*H***-indole-4,7-dione 3l.** Orange crystals; mp 218–219 °C; IR (CHCl₃) 3010, 2955, 1645, 1615, 1585 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.91 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.29 (s, 3H, CH₃), 3.97 (s, 3H, NCH₃), 7.42 (t, *J*=7.6 Hz, 2H, ArH), 7.55 (t, *J*=7.6 Hz, 1H, ArH), 7.80–7.87 (m, 2H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.5 (q), 12.1 (q), 12.4 (q), 32.5 (q), 120.0 (s), 124.0 (s), 128.3 (2×d), 129.3 (2×d), 133.0 (d), 138.4 (s), 139.2 (s), 140.0 (s), 140.7 (s), 178.6 (s), 181.9 (s), 193.1 (s). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.26; H, 5.65; N, 4.55.

3.3.13. Ethyl 2,3,4,7-tetrahydro-1,5,6-trimethyl-2,4,7-trioxo-3-propyl-1*H***-indole-3-carboxylate 4a.** Orange crystals; mp 99–100 °C; IR (CHCl₃) 2970, 1730, 1665, 1645, 1240 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J*=7.1 Hz, 3H, CH₃), 0.94–1.06 (m, 2H, CH₂), 1.19 (t, *J*=7.1 Hz, 3H, CH₃), 2.05 (s, 6H, 2×CH₃), 2.20–2.40 (m, 2H, CH₂), 3.42 (s, 3H, NCH₃), 4.16 (q, *J*=7.1 Hz, 2H, OCH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 11.9 (q), 12.3 (q), 13.87 (q), 13.92 (q), 17.5 (t), 28.7 (q), 34.7 (t), 60.6 (s), 62.3 (t), 123.0 (s), 138.3 (s), 141.4 (s), 145.1 (s), 166.3 (s), 175.1 (s), 180.6 (s), 180.8 (s). Anal. Calcd for C₁₇H₂₁NO₅: C, 63.94; H, 6.63; N, 4.39. Found: C, 63.92; H, 6.68; N, 4.44.

3.3.14. Methyl 2,3,4,7-tetrahydro-3-isopropyl-1,5,6-trimethyl-2,4,7-trioxo-1*H*-indole-3-carboxylate 4b. Orange crystals; mp 82–83 °C; IR (CHCl₃) 2960, 1755, 1730, 1645, 1235 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.95 (d, *J*=6.8 Hz, 3H, CH₃), 0.98 (d, *J*=6.8 Hz, 3H, CH₃), 2.06 (s, 6H, 2×CH₃), 2.95 (septet, *J*=6.8 Hz, 1H, CH), 3.43 (s, 3H, NCH₃), 3.70 (s, 3H, OCH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 11.8 (q), 12.5 (q), 17.0 (q), 18.8 (q), 28.7 (q), 33.4 (d), 53.0 (q), 64.8 (s), 121.8 (s), 137.9 (s), 141.8 (s), 145.6 (s), 166.5 (s), 174.4 (s), 180.57 (s), 180.60 (s). Anal. Calcd for C₁₆H₁₉NO₅: C, 62.94; H, 6.27; N, 4.59. Found: C, 62.93; H, 6.28; N, 4.61.

3.3.15. Methyl 2,3,4,7-tetrahydro-3-methoxymethyl-1,5,6-trimethyl-2,4,7-trioxo-1*H*-indole-3-carboxylate 4c. Brick red crystals; mp 97–98 °C; IR (CHCl₃) 2960, 2925, 1760, 1730, 1645, 1605, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.06 (s, 6H, 2×CH₃), 3.25 (s, 3H, OCH₃), 3.43 (s, 3H, NCH₃), 3.70 (s, 3H, OCH₃), 4.12 (d, *J*=8.4 Hz, 1H, OCH), 4.21 (d, *J*=8.4 Hz, 1H, OCH); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.7 (q), 12.0 (q), 28.7 (q), 53.0 (q), 59.2 (q), 60.4 (s), 71.9 (t), 121.0 (s), 138.2 (s), 141.0 (s), 145.7 (s), 164.7 (s), 173.6 (s), 180.3 (s), 180.6 (s). Anal. Calcd for C₁₅H₁₇NO₆: C, 58.63; H, 5.58; N, 4.56. Found: C, 58.58; H, 5.60; N, 4.51.

3.3.16. Ethyl 3-chloromethyl-2,3,4,7-tetrahydro-1,5,6trimethyl-2,4,7-trioxo-1*H***-indole-3-carboxylate 4d. Brick red crystals; mp 90–91 °C; IR (CHCl₃) 2990, 1730, 1665, 1625, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.22 (t,** *J***=7.1 Hz, 3H, CH₃), 2.07 (s, 6H, 2×CH₃), 3.45 (s, 3H, NCH₃), 4.20 (q,** *J***=7.1 Hz, 2H, OCH₂), 4.24 (d,** *J***=10.9 Hz, 1H, CICH), 4.29 (d,** *J***=10.9 Hz, 1H, CICH); ¹³C NMR (100.6 MHz, CDCl₃) \delta 12.0 (q), 12.2 (q), 13.9 (q), 29.0 (q), 42.7 (t), 61.2 (s), 63.0 (t), 120.2 (s), 138.7 (s), 141.4 (s), 146.4 (s), 164.3 (s), 172.7 (s), 180.4 (s), 180.6 (s). Anal. Calcd for C₁₅H₁₆CINO₅: C, 55.31; H, 4.95; N, 4.30. Found: C, 55.36; H, 5.08; N, 4.26.**

3.3.17. 3-Acetyl-2-butyl-1,5,6-trimethyl-1*H***-indole-4,7dione 5a.** Yellow powders; mp 96–97 °C; IR (CHCl₃) 3010, 2960, 1645, 1505, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J*=7.5 Hz, 3H, CH₃), 1.40 (sextet, J=7.5 Hz, 2H, CH₂), 1.52 (quintet, J=7.5 Hz, 2H, CH₂), 2.048 (s, 3H, CH₃), 2.054 (s, 3H, CH₃), 2.63 (s, 3H, CH₃), 2.76 (t, J=7.5 Hz, 2H, CH₂), 3.92 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 12.0 (q), 12.6 (q), 13.7 (q), 22.6 (t), 24.1 (t), 31.2 (t), 31.5 (q), 32.5 (q), 121.6 (s), 122.9 (s), 128.6 (s), 139.7 (s), 141.0 (s), 144.7 (s), 178.7 (s), 183.0 (s), 198.8 (s). Anal. Calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.37; N, 4.87. Found: C, 71.05; H, 7.36; N, 4.74.

3.3.18. 1,2,5,6-Tetramethyl-1*H***-indole-4,7-dione 12a.** Orange needles; mp 120–121 °C; IR (CHCl₃) 2960, 1730, 1640, 1450, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.98 (s, 6H, 2×CH₃), 2.23 (s, 3H, CH₃), 3.82 (s, 3H, NCH₃), 6.25 (s, 1H, CH); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.9 (q), 12.0 (q), 12.2 (q), 32.1 (q), 106.1 (d), 125.8 (s), 129.0 (s), 137.9 (s), 139.8 (s), 140.3 (s), 177.8 (s), 183.2 (s). Anal. Calcd for C₁₂H₁₃NO₂: C, 70.92; H, 6.45; N, 6.89. Found: C, 70.95; H, 6.29; N, 6.80.

3.3.19. 1,5,6-Trimethyl-2-phenyl-1*H***-indole-4,7-dione 12b.** Yellow crystals; mp 152–153 °C; IR (CHCl₃) 2960, 2925, 1730, 1645, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 6H, 2×CH₃), 3.89 (s, 3H, NCH₃), 6.55 (s, 1H, CH), 7.36–7.52 (m, 5H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.1 (q), 12.2 (q), 34.1 (q), 107.3 (d), 125.9 (s), 128.6 (2×d), 128.7 (d), 129.1 (2×d), 129.7 (s), 130.4 (s), 140.2 (s), 140.7 (s), 142.1 (s), 178.1 (s), 182.9 (s). Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.92; H, 5.75; N, 5.26.

3.3.20. 2,3,5-Trimethyl-6,7,8,9-tetrahydro-5*H***-carbazole-1,4-dione 12c.** Brick red needles; mp 126–127 °C; IR (CHCl₃) 2955, 2925, 1730, 1635, 1255 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.70–1.78 (m, 2H, CH₂), 1.81–1.89 (m, 2H, CH₂), 1.98 (s, 6H, 2×CH₃), 2.52 (t, *J*=6.0 Hz, 2H, CH₂), 2.74 (t, *J*=6.0 Hz, 2H, CH₂), 3.78 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.0 (2×q), 21.5 (t), 22.2 (t), 22.3 (t), 22.5 (t), 31.8 (q), 120.2 (s), 122.5 (s), 127.9 (s), 137.6 (s), 139.7 (s), 140.2 (s), 177.6 (s), 184.2 (s). Anal. Calcd for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76. Found: C, 73.95; H, 7.01; N, 5.77.

3.3.21. 1,5,6-Trimethyl-2,3-diphenyl-1*H***-indole-4,7-dione 12d.** Brick red crystals; mp 204–205 °C; IR (KBr) 1645, 1505, 1455, 1285, 1225 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H, CH₃), 2.08 (s, 3H, CH₃), 3.86 (s, 3H, NCH₃), 7.13–7.18 (m, 2H, ArH), 7.18–7.22 (m, 5H, ArH), 7.31–7.36 (m, 3H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.1 (q), 12.4 (q), 34.3 (q), 122.2 (s), 123.9 (s), 126.9 (d), 127.4 (2×d), 128.5 (2×d), 128.7 (d), 129.3 (s), 129.5 (s), 130.4 (2×d), 130.9 (2×d), 132.6 (s), 139.8 (s), 140.0 (s), 141.5 (s), 178.7 (s), 183.0 (s). Anal. Calcd for C₂₃H₁₉NO₂: C, 80.92; H, 5.61; N, 4.10. Found: C, 80.99; H, 5.63; N, 4.10.

3.3.22. 1,5,6-Trimethyl-2-pentyl-1*H***-indole-4,7-dione 14b.** Brick red crystals; mp 68–69 °C; IR (KBr) 2935, 1635, 1455, 1370 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, *J*=6.8 Hz, 3H, CH₃), 1.30–1.44 (m, 4H, 2×CH₂), 1.59–1.71 (m, 2H, CH₂), 2.03 (s, 6H, 2×CH₃), 2.56 (t, *J*=7.7 Hz, 2H, CH₂), 3.88 (s, 3H, NCH₃), 6.34 (s, 1H, CH); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.2 (q), 12.3 (q), 13.9 (q), 22.4 (t), 25.9 (t), 27.6 (t), 31.4 (t), 32.2 (q), 105.4 (d), 125.9 (s), 129.0 (s), 139.9 (s), 140.5 (s), 142.6 (s), 178.1 (s), 183.5 (s). Anal. Calcd for $C_{16}H_{21}NO_2$: C, 74.10; H, 8.16; N, 5.40. Found: C, 74.13; H, 8.19; N, 5.40.

3.3.23. 1,5,6-Trimethyl-2-(2-methylpropyl)-1*H***-indole-4,7-dione 14c.** Brick red crystals; mp 105–106 °C; IR (KBr) 3110, 2955, 1635, 1445, 1360 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (d, *J*=6.8 Hz, 6H, 2×CH₃), 1.92 (nontet, *J*=6.8 Hz, 1H, CH), 2.03 (s, 6H, 2×CH₃), 2.45 (d, *J*=6.8 Hz, 2H, CH₂), 3.88 (s, 3H, NCH₃), 6.33 (s, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.8 (q), 11.9 (q), 22.2 (2×q), 27.6 (d), 32.1 (q), 34.8 (t), 106.1 (d), 125.6 (s), 128.7 (s), 139.5 (s), 140.3 (s), 141.3 (s), 177.5 (s), 182.9 (s). Anal. Calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71. Found: C, 73.40; H, 7.90; N, 5.69.

3.3.24. 3-Isopropyl-1,5,6-trimethyl-1*H***-indole-4,7-dione 14d.** Orange crystals; mp 137–138 °C; IR (KBr) 2960, 1635, 1495, 1365, 1240 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (d, *J*=6.8 Hz, 6H, 2×CH₃), 2.03 (s, 6H, 2×CH₃), 2.93 (septet, *J*=6.8 Hz, 1H, CH), 3.91 (s, 3H, NCH₃), 6.38 (s, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.0 (q), 12.1 (q), 21.9 (2×q), 25.1 (q), 32.0 (d), 102.9 (d), 125.8 (s), 128.8 (s), 139.7 (s), 140.4 (s), 148.3 (s), 177.8 (s), 183.1 (s). Anal. Calcd for C₁₄H₁₇NO₂: C, 72.70; H, 7.41; N, 6.06. Found: C, 72.55; H, 7.48; N, 6.00.

3.3.25. 1,2,3,5,6-Pentamethyl-1*H***-indole-4,7-dione 15a.** Brick red crystals; mp 179–180 °C; IR (CHCl₃) 2950, 1630, 1515, 1475 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.00 (s, 6H, 2×CH₃), 2.15 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 3.86 (s, 3H, NCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 9.3 (q), 10.0 (q), 12.1 (2×q), 32.4 (q), 118.2 (s), 123.4 (s), 128.0 (s), 135.5 (s), 140.1 (s), 140.2 (s), 177.7 (s), 184.6 (s). Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.75; H, 6.85; N, 6.43.

3.3.26. 3-Butyl-1,2,5,6-tetramethyl-1*H***-indole-4,7-dione 15b.** Brick red crystals; mp 78–79 °C; IR (KBr) 2925, 1635, 1505, 1465, 1245 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, *J*=7.2 Hz, 3H, CH₃), 1.35 (sextet, *J*=7.2 Hz, 2H, CH₂), 1.41–1.52 (m, 2H, CH₂), 2.01 (s, 6H, 2×CH₃), 2.17 (s, 3H, CH₃), 2.69 (t, *J*=7.2 Hz, 2H, CH₂), 3.87 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 9.3 (q), 12.0 (q), 12.1 (q), 14.0 (q), 22.6 (t), 24.4 (t), 32.3 (q), 32.5 (t), 122.8 (s), 123.7 (s), 128.1 (s), 135.3 (s), 140.0 (s), 140.1 (s), 177.6 (s), 184.2 (s). Anal. Calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40. Found: C, 73.96; H, 8.19; N, 5.41.

3.3.27. 3-Isopropyl-1,2,5,6-tetramethyl-1*H***-indole-4,7-dione 15c.** Brick red crystals; mp 93–94 °C; IR (KBr) 2920, 1635, 1455, 1250, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (d, *J*=7.1 Hz, 6H, 2×CH₃), 2.01 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 3.39 (septet, *J*=7.1 Hz, 1H, CH), 3.88 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 10.4 (q), 12.0 (q), 12.5 (q), 21.1 (2×q), 25.1 (d), 32.3 (q), 122.5 (s), 128.7 (s), 129.4 (s), 134.2 (s), 139.5 (s), 140.5 (s), 178.0 (s), 183.9 (s). Anal. Calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71. Found: C, 73.27; H, 7.90; N, 5.59.

3.3.28. 3-(2-Methoxycarbonylethyl)-1,2,5,6-tetramethyl-*1H*-indole-4,7-dione 15d. Orange crystals; mp 114– 115 °C; IR (CHCl₃) 2955, 1730, 1635, 1465, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.00 (s, 6H, 2×CH₃), 2.21 (s, 3H, CH₃), 2.61 (t, *J*=7.3 Hz, 2H, CH₂), 2.95 (t, *J*=7.3 Hz, 2H, CH₂), 3.64 (s, 3H, OCH₃), 3.86 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 9.9 (q), 12.2 (q), 12.3 (q), 20.0 (t), 32.2 (q), 33.4 (t), 55.1 (q), 120.8 (s), 122.7 (s), 128.4 (s), 135.7 (s), 140.0 (s), 140.2 (s), 173.7 (s), 177.7 (s), 184.0 (s). Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.56; H, 6.63; N, 4.81.

3.3.29. 4-(4,7-Dihydro-1,2,5,6-tetramethyl-4,7-dioxo-1*H***-indol-3-yl)-butyric acid 15e.** Orange crystals; mp 160–161 °C; IR (CHCl₃) 3525 (br), 2925, 1710, 1635, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.86 (quintet, *J*=7.4 Hz, 2H, CH₂), 2.01 (s, 6H, 2×CH₃), 2.18 (s, 3H, CH₃), 2.37 (t, *J*=7.4 Hz, 2H, CH₂), 2.77 (t, *J*=7.4 Hz, 2H, CH₂), 3.87 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 9.4 (q), 12.1 (q), 12.2 (q), 23.7 (t), 25.0 (t), 32.4 (q), 33.2 (t), 121.8 (s), 123.0 (s), 128.4 (s), 135.6 (s), 140.17 (s), 140.22 (s), 177.8 (s), 179.1 (s), 184.3 (s). Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.48; H, 6.62; N, 4.85.

3.3.30. 3-Ethoxycarbonyl-1,2,5-trimethyl-1*H***-indole-4,7-dione 20a.** Yellow crystals; mp 113–114 °C; IR (CHCl₃) 2990, 1710, 1655, 1620, 1500 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, *J*=7.1 Hz, 3H, CH₃), 2.07 (d, *J*=1.4 Hz, 3H, CH₃), 2.44 (s, 3H, CH₃), 3.91 (s, 3H, NCH₃), 4.39 (q, *J*=7.1 Hz, 2H, OCH₂), 6.36 (q, *J*=1.4 Hz, 1H, CH); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.7 (q), 14.2 (q), 16.0 (q), 32.4 (q), 60.9 (t), 113.2 (s), 123.6 (s), 129.3 (s), 132.5 (d), 141.0 (s), 146.7 (s), 164.4 (s), 178.7 (s), 181.8 (s). Anal. Calcd for C₁₄H₁₅NO₄: C, 64.36; H, 5.79; N, 5.36. Found: C, 64.31; H, 5.77; N, 5.33.

3.3.31. 3-Ethoxycarbonyl-1,5-dimethyl-2-propyl-1*H***-indole-4,7-dione 20b. Yellow powders; mp 56–57 °C; IR (CHCl₃) 2970, 1660, 1645, 1615, 1460, 1265 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) \delta 0.99 (t,** *J***=7.6 Hz, 3H, CH₃), 1.40 (t,** *J***=7.1 Hz, 3H, CH₃), 1.62 (sextet,** *J***=7.6 Hz, 2H, CH₂), 2.07 (d,** *J***=1.5 Hz, 3H, CH₃), 2.81 (t,** *J***=7.6 Hz, 2H, CH₂), 3.92 (s, 3H, NCH₃), 4.39 (q,** *J***=7.1 Hz, 2H, CH₂), 6.36 (q,** *J***=1.5 Hz, 1H, CH); ¹³C NMR (125.8 MHz, CDCl₃) \delta 13.8 (q), 14.2 (q), 15.9 (q), 22.4 (t), 26.4 (t), 32.4 (q), 60.9 (t), 113.3 (s), 123.7 (s), 129.3 (s), 132.6 (d), 144.8 (s), 146.7 (s), 164.4 (s), 178.7 (s), 181.9 (s). Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.32; H, 6.66; N, 4.81.**

3.3.32. 3-Acetyl-1,2,5-trimethyl-1*H***-indole-4,7-dione 20c.** Yellow powders; mp 190–191 °C; IR (CHCl₃) 3005, 2925, 1645, 1620, 1465, 1265 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.09 (d, *J*=1.3 Hz, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.64 (s, 3H, CH₃), 3.91 (s, 3H, NCH₃), 6.39 (q, *J*=1.3 Hz, 1H, CH); ¹³C NMR (125.8 MHz, CDCl₃) δ 10.7 (q), 16.0 (q), 31.5 (q), 32.3 (q), 122.1 (s), 122.9 (s), 128.8 (s), 132.9 (d), 140.7 (s), 146.3 (s), 178.7 (s), 183.2 (s), 198.7 (s). Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.43; H, 5.80; N, 5.82.

3.3.33. 1,2,5-Trimethyl-3-(3-methylbutanoyl)-1*H***-indole-4,7-dione 20d.** Yellow crystals; mp 99–100 °C; IR (CHCl₃) 2960, 1645, 1620, 1460, 1265, 1235 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.94 (d, *J*=6.9 Hz, 6H, 2×CH₃), 2.08 (d, *J*=1.5 Hz, 3H, CH₃), 2.16 (nontet, *J*=6.9 Hz, 1H, CH), 2.34 (s, 3H, CH₃), 2.91 (d, *J*=6.9 Hz, 2H, CH₂), 3.90 (s, 3H, NCH₃), 6.37 (q, *J*=1.5 Hz, 1H, CH); ¹³C NMR (125.8 MHz, CDCl₃) δ 10.5 (q), 15.9 (q), 22.6 (2×q), 25.5 (d), 32.3 (q), 52.3 (t), 122.56 (s), 122.65 (s), 128.6 (s), 132.9 (d), 139.9 (s), 146.2 (s), 178.6 (s), 183.0 (s), 201.9 (s). Anal. Calcd for C₁₆H₁₉NO₃: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.25; H, 7.11; N, 5.13.

3.3.34. 1,2,5-Trimethyl-3-(pivaloyl)-1*H***-indole-4,7-dione 20e.** Yellow crystals; mp 151–152 °C; IR (CHCl₃) 2970, 1645, 1615, 1465, 1270 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.24 (s, 9H, 3×CH₃), 2.03 (d, *J*=1.6 Hz, 3H, CH₃), 2.17 (s, 3H, CH₃), 3.88 (s, 3H, NCH₃), 6.35 (q, *J*=1.6 Hz, 1H, CH); ¹³C NMR (125.8 MHz, CDCl₃) δ 10.8 (q), 15.6 (q), 27.0 (3×q), 32.3 (q), 45.7 (s), 122.0 (s), 123.6 (s), 128.2 (s), 133.6 (d), 134.3 (s), 145.5 (s), 178.3 (s), 182.7 (s), 211.7 (s). Anal. Calcd for C₁₆H₁₉NO₃: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.17; H, 7.00; N, 5.10.

3.3.35. 3-Benzoyl-1,2,5-trimethyl-1*H***-indole-4,7-dione 20f.** Yellow needles; mp 218–219 °C; IR (CHCl₃) 3010, 1645, 1615, 1465, 1325, 1275 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.94 (d, *J*=1.6 Hz, 3H, CH₃), 2.29 (s, 3H, CH₃), 3.96 (s, 3H, NCH₃), 6.38 (q, *J*=1.6 Hz, 1H, CH), 7.39–7.46 (m, 2H, ArH), 7.52–7.58 (m, 1H, ArH), 7.80–7.86 (m, 2H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.5 (q), 15.7 (q), 32.4 (q), 120.4 (s), 124.1 (s), 128.4 (2×d), 128.5 (s), 129.2 (2×d), 133.1 (d), 133.2 (d), 138.4 (s), 139.3 (s), 146.0 (s), 178.6 (s), 182.1 (s), 193.0 (s). Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.56; H, 5.17; N, 4.76.

3.3.36. 1,2,5-Trimethyl-1*H***-indole-4,7-dione 21a.** Orange needles; mp 108–109 °C; IR (KBr) 2950, 1645, 1445, 1205, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.04 (d, *J*=1.6 Hz, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.87 (s, 3H, NCH₃), 6.32 (q, *J*=1.6 Hz, 1H, CH), 6.34 (s, 1H, CH); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.9 (q), 15.5 (q), 32.0 (q), 106.5 (d), 126.0 (s), 129.1 (s), 133.7 (d), 138.2 (s), 145.1 (s), 177.8 (s), 183.4 (s). Anal. Calcd for C₁₁H₁₁NO₂: C, 69.83; H, 5.86; N, 7.40. Found: C, 69.74; H, 5.84; N, 7.36.

3.3.37. 2-Ethyl-1,3,5-trimethyl-1*H***-indole-4,7-dione 21b.** Orange crystals; mp 91–92 °C; IR (KBr) 2970, 1640, 1470, 1230, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (t, *J*=7.6 Hz, 3H, CH₃), 2.03 (d, *J*=1.5 Hz, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.62 (q, *J*=7.6 Hz, 2H, CH₂), 3.90 (s, 3H, NCH₃), 6.31 (q, *J*=1.5 Hz, 1H, CH); ¹³C NMR (75.4 MHz, CDCl₃) δ 9.8 (q), 13.3 (q), 15.5 (q), 16.8 (t), 32.1 (q), 118.3 (s), 123.6 (s), 128.1 (s), 133.8 (d), 141.2 (s), 145.4 (s), 177.8 (s), 184.9 (s). Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.71; H, 6.96; N, 6.43.

3.3.38. 1,5-Dimethyl-2-phenyl-1*H***-indole-4,7-dione 21c.** Orange crystals; mp 124–125 °C; IR (CHCl₃) 3010, 2960, 1645, 1445, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.08 (d, *J*=1.5 Hz, 3H, CH₃), 3.91 (s, 3H, NCH₃), 6.40 (q, *J*=1.5 Hz, 1H, CH), 6.62 (s, 1H, CH), 7.36–7.52 (m, 5H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 15.7 (q), 34.1 (q), 107.9 (d), 126.3 (s), 128.7 (2×d), 128.9 (d), 129.2 $(2 \times d)$, 130.0 (s), 130.3 (s), 134.0 (d), 142.3 (s), 145.7 (s), 178.4 (s), 183.5 (s). Anal. Calcd for $C_{16}H_{13}NO_2$: C, 76.48; H, 5.21; N, 5.57. Found: C, 76.40; H, 5.29; N, 5.48.

3.3.39. 1,5-Dimethyl-2,3-diphenyl-1*H***-indole-4,7-dione 21d.** Brick red crystals; mp 238–239 °C; IR (KBr) 1650, 1455, 1260, 1195 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, *J*=1.5 Hz, 3H, CH₃), 3.86 (s, 3H, NCH₃), 6.45 (q, *J*=1.5 Hz, 1H, CH), 7.14–7.24 (m, 7H, ArH), 7.31–7.38 (m, 3H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 15.8 (q), 34.1 (q), 122.3 (s), 124.4 (s), 127.0 (d), 127.5 (2×d), 128.5 (2×d), 128.8 (d), 129.3 (s), 129.4 (s), 130.4 (2×d), 130.9 (2×d), 132.4 (s), 133.3 (d), 139.9 (s), 146.8 (s), 178.7 (s), 183.2 (s). Anal. Calcd for C₂₂H₁₇NO₂: C, 80.71; H, 5.23; N, 4.28. Found: C, 80.57; H, 5.25; N, 4.22.

3.3.40. 1,2,5-Trimethyl-6-(2-oxo-propyl)-1*H***-indole-4,7-dione 22a.** Orange crystals; mp 153–154 °C; IR (KBr) 2955, 1710, 1640, 1240, 1165 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H, CH₃), 2.267 (s, 3H, CH₃), 2.272 (s, 3H, CH₃), 3.67 (s, 2H, CH₂), 3.86 (s, 3H, NCH₃), 6.35 (s, 1H, CH); ¹³C NMR (75.4 MHz, CDCl₃) δ 12.0 (q), 12.5 (q), 30.0 (q), 32.2 (q), 41.2 (t), 106.6 (d), 126.1 (s), 128.7 (s), 137.9 (s), 138.5 (s), 142.4 (s), 176.7 (s), 182.8 (s), 204.2 (s). Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.50; H, 6.14; N, 5.68.

3.3.41. 2-Ethyl-1,3,5-trimethyl-6-(1-methyl-2-oxo-butyl)-*1H*-indole-4,7-dione 22b. Brick red liquid; IR (KBr) 2970, 1715, 1630, 1460, 1245 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.04 (t, *J*=7.3 Hz, 3H, CH₃), 1.14 (t, *J*=7.6 Hz, 3H, CH₃), 1.32 (d, *J*=6.9 Hz, 3H, CH₃), 2.03 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.35 (q, *J*=7.3 Hz, 2H, CH₂), 2.62 (q, *J*=7.6 Hz, 2H, CH₂), 3.74 (q, *J*=6.9 Hz, 1H, CH), 3.89 (s, 3H, NCH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 8.1 (q), 9.7 (q), 12.0 (q), 13.1 (q), 14.3 (q), 16.8 (t), 32.3 (q), 33.6 (t), 45.3 (d), 118.2 (s), 123.5 (s), 127.5 (s), 141.5 (s), 141.9 (s), 144.5 (s), 176.0 (s), 184.2 (s), 209.5 (s); HRMS calcd for C₁₈H₂₃NO₃: *m/z* 301.1678; found: *m/z* 301.1682.

Acknowledgements

We are grateful to the National Science Council of the ROC for financial support (Grant No. NSC-92-2113-M-006-008).

References and notes

- (a) Hart, D. J. Science 1984, 223, 883; (b) Neumann, W. P. Synthesis 1987, 665; (c) Curran, D. P. Synthesis 1988, 417 and 489; (d) Melikyan, G. G. Synthesis 1993, 833; (e) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519; (f) Snider, B. B. Chem. Rev. 1996, 96, 339.
- (a) The Chemistry of Functional Groups: The Chemistry of the Quinoid Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, NY, 1988; (b) Thomson, R. H. Natural Occurring

Quinones IV: Recent Advances; Chapman and Hall: London, 1997.

- (a) Shaw, K. J.; Luly, J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515; (b) Murphy, W. S.; O'Sullivan, P. J. Tetrahedron Lett. 1992, 33, 531; (c) O'Sullivan, P. J.; Moreno, R.; Murphy, W. S. Tetrahedron Lett. 1992, 33, 535.
- 4. (a) Yogo, M.; Ito, C.; Furukawa, H. *Chem. Pharm. Bull.* 1991, 39, 328; (b) Bittner, S.; Krief, P.; Massil, T. *Synthesis* 1991, 215; (c) Knölker, H.-J.; O'Sullivan, N. *Tetrahedron* 1994, 50, 10893; (d) Åkermark, B.; Oslob, J. D.; Heuschert, U. *Tetrahedron Lett.* 1995, 36, 1325; (e) Echavarran, A. M.; Tamayo, N.; De Frutos, O.; Garcia, A. *Tetrahedron* 1997, 50, 16835.
- (a) Oumar-Mahamat, H.; Moustrou, C.; Surzur, J.-M.; Berstrand, M. P. J. Org. Chem. **1989**, 54, 5684; (b) Snider, B. B.; Wan, B. Y. F.; Buckman, B. O.; Foxman, B. M. J. Org. Chem. **1991**, 56, 5328; (c) Citterio, A.; Sebastiano, R.; Carvayal, M. C. J. Org. Chem. **1991**, 56, 5335; (d) Citterio, A.; Sebastiano, R.; Nicolini, M. Tetrahedron **1993**, 49, 7743.
- 6. (a) Chuang, C.-P.; Wang, S.-F. Tetrahedron Lett. 1994, 35, 4365; (b) Chuang, C.-P.; Wang, S.-F. J. Chin. Chem. Soc. 1997, 44, 271; (c) Chuang, C.-P.; Wang, S.-F. Tetrahedron 1998, 54, 10043; (d) Chuang, C.-P.; Wang, S.-F. Heterocycles 1999, 50, 489; (e) Chuang, C.-P.; Wu, Y.-L.; Jiang, M.-C. Tetrahedron 1999, 55, 11229; (f) Jiang, M.-C.; Chuang, C.-P. J. Org. Chem. 2000, 65, 5409; (g) Wu, Y.-L.; Chuang, C.-P.; Lin, P.-Y. Tetrahedron 2001, 57, 5543; (h) Tsai, A.-I.: Wu, Y.-L.; Chuang, C.-P. Tetrahedron 2001, 57, 7829; (i) Chuang, C.-P.; Wu, Y.-L. Tetrahedron Lett. 2001, 42, 1719; (j) Tseng, C.-C.; Wu, Y.-L.; Chuang, C.-P. Tetrahedron 2002, 58, 7625; (k) Tseng, C.-M.; Wu, Y.-L.; Chuang, C.-P. Tetrahedron 2004, 60, 12249; (1) Chen, H.-L.; Lin, C.-Y.; Cheng, Y.-C.; Tsai, A.-I.; Chuang, C.-P. Synthesis 2005, 977; (m) Lin, C.-Y.; Cheng, Y.-C.; Tsai, A.-I.; Chuang, C.-P. Org. Biomol. Chem. 2006, 1097.
- (a) Liao, Y.-J.; Wu, Y.-L.; Chuang, C.-P. *Tetrahedron* 2003, *59*, 3511; (b) Chuang, C.-P.; Wu, Y.-L. *Tetrahedron* 2004, *60*, 1841; (c) Tsai, A.-I.; Lin, C.-H.; Chuang, C.-P. *Heterocycles* 2005, 977; (d) Tsai, A.-I.; Chuang, C.-P. *Tetrahedron* 2006, *62*, 2235.
- (a) Jacobsen, N.; Torsell, K. Acta Chem. Scand. 1973, 27, 3211;
 (b) Brown, P. M.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1 1976, 997;
 (c) Citterio, A.; Arnoldi, A.; Minisci, F. J. Org. Chem. 1979, 44, 2674;
 (d) Citterio, A.; Vismara, E.; Bernardi, R. J. Chem. Res., Synop. 1983, 88;
 (e) Citterio, A.; Vismara, E.; Bernardi, R. J. Chem. Res., Miniprint 1983, 876;
 (f) Williams, D. R.; Clark, M. P. Tetrahedron Lett. 1998, 39, 7629.
- (a) Imamoto, T.; Sugiura, Y.; Takiyama, N. *Tetrahedron Lett.* 1984, 25, 4233; (b) Imamoto, T.; Takiyama, N.; Nakamura, K. *Tetrahedron Lett.* 1985, 26, 4763. Also see: Ref. 6j.
- (a) Snider, B. B.; Merritt, J. E.; Dombroski, M. A.; Buckman, B. O. J. Org. Chem. **1991**, 56, 5544; (b) Snider, B. B.; McCarthy, B. A. J. Org. Chem. **1993**, 58, 6217; (c) Ishibashi, H.; Toyao, A.; Takeda, Y. Synlett **1999**, 1468. Also see: Ref. 6b–e,k.
- (a) Kallmeyer, H.-J.; Tappe, C. Arch. Pharmacol. 1986, 319, 421; (b) Kallmeyer, H.-J.; Tappe, C. Arch. Pharmacol. 1986, 41, 29.